Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 98: 104079, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796551

RESUMO

Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Tamanho da Partícula , Pulmão , Células Epiteliais , Hidrocarbonetos Policíclicos Aromáticos/análise , Inflamação/metabolismo , Dano ao DNA , Materiais de Construção , Fibroblastos
2.
Toxicol Mech Methods ; 33(5): 411-426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36519334

RESUMO

Particularly since the wide-ranging health effects of asbestos exposure became known, great emphasis has been placed on detailed toxicity testing of known but also newly developed fiber materials. Exposure to respirable pollutants like fibers can lead to tissue injury causing lung diseases such as pulmonary fibrosis or cancer. In order to detect the toxic potential of such aerosols at an early stage, the development of suitable test systems is essential. In this study, we illustrate the development of an advanced in vitro cell model closely resembling the physiological structure of the alveoli, and we highlight its advantages over simpler models to predict pro-fibrotic changes. For this reason, we analyzed the cytotoxic effects of fiber-like multi-walled carbon nanotubes after 24 and 48 h exposure, and we investigated inflammatory, genotoxic and pro-fibrotic changes occurring in the developed triple culture consisting of lung epithelial cells, macrophages and fibroblasts compared to a co-culture of epithelial cells and fibroblasts or a mono culture of epithelial cells. In summary, the triple culture system is more precisely able to detect a pro-fibrotic phenotype including epithelial-mesenchymal transition as well as secondary genotoxicity, even if exhibiting lower cytotoxicity in contrast to the less advanced systems. These effects might be traced back to the complex interplay between the different cell types, all of which play an important role in the inflammatory response, which precedes wound healing, or even fibrosis or cancer development.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Aerossóis e Gotículas Respiratórios , Pulmão , Comunicação Celular
3.
Environ Int ; 166: 107366, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763991

RESUMO

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

4.
Environ Res ; 211: 112968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35240115

RESUMO

Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS: Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS: Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION: Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.


Assuntos
Pólen , Emissões de Veículos , Células Epiteliais , Humanos , Inflamação , Extratos Vegetais/farmacologia , Emissões de Veículos/toxicidade
5.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112925

RESUMO

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Idoso , Envelhecimento , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...